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ABSTRACT 

A detailed method of solution for a system of two second-order ordinary differential 
equations which arise in the steady state quasi-geostrophic theory of global monsoons 
or axially asymmetric circulations, is given. Two particular solutions which are very 
satisfactory are also shown as examples. 

1. ImR00uc~10N 

In dealing with the dynamical influence of the Budyko-type [I] diabatic heating 
on the stationary harmonics of the atmospheric motion, in a quasi-geostrophic 
model, we are led to the following coupled system of second-order ordinary 
differential equations, along with their boundary conditions; c.f. Doas [2]: 

sl~+s,~+s,.v,=s,.Tl-s,(~)*; (1) 

~+G,.v,=H,.T,-K,(~)~at5=~T; (2) 

$+L,. 4 W-p.vv2=M~.Tl-Nl T,atE=C8; ( ) (3) 

R, $ + Rz 2 + P, . ~2 = R, , 7’2 + R, ($& ; (4) 

2 + G2 . v2 = H2 . T, + K2 (-$), at E = & ; (5) 

2 + L2 . v, - /.L . v1 = M, . T, + Nz (3) at 5 = Es . (6) 6 
Here v1 and v2 are dependent variables and [ is the independent variable. S, , 

S2, S, , S, , S, , R, , R, , R, , R4, and R, are continuous functions of f. Gl , HI, 
Tl, &, Lx, P., Ml, N1 , G2 , H2, T2, K, , L, , M2 , N2, are known constants. 
Equations (2) and (3) are the boundary conditions of (I), while (5) and (6) are the 
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boundary conditions of (4). Subscripts T and 6 indicate top and bottom (& and 53 
of the atmosphere. 

In applying finite-difference methods to solve the above system, one is most 
likely to think first in terms of some iterative procedure to obtain a solution. It is 
the purpose of this note to describe a variation of a more powerful method 
discussed by Richtmyer [3] which does not involve the problems of convergence 
usually associated with iterative procedures. 

A. The Grid 
2. THE FINITE DIFFERENCE METHOD 

To express differentials in finite difference form, we divide the region & to f6 
into a number of equally spaced grid intervals. The grid points will be referenced 
by the index j ranging from j = 1 at 5 = & to J = A4 at .$ = t6 . Also we make 
use of two fictitious points, J = 0 and j = M + 1, on either side of this range, to 
apply the boundary conditions. The grid distance between two consecutive points 
will be denoted by St. We shall use centered-difference formulas for derivatives. 

B. The Body Equations 

Thus, in finite-difference form, we can write for (1) and (4), 

dj) . udj + 1) + PI(j) . ul( j) + yl( j) . ud j - 1) = xl(j) . Tl - &(-I). (Au&& , 
(7) 

a2(j) - u2(j + 1) + B2(j>. u2(j) + r2W. u2(j - 1) = x2(j). T2 + #2(j). (&/AOa, 
(8) 

where 

AU2 
( 1 
-= u,(M + I) - u,(M - 1) 

At a 2@ 
3 

a2(j> = WW + R2(j) . RI, 
B2W = t%(j) . St2 - 4&W19 
r2W = PW) - R2(j) . %I, 
x2(i) = h(j) .2 . at’, #2W = W) .2 . V2, 

Au, 

( > 
- zz2 

u,(M + 1) - u,(M - 1) 

A5 a w 
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Now let us seek a two parameter family of solutions of (7) and (8) in the form 

V,(j) = El(j). Vl(j + 1) + W) + MA * (A ~&k%i 3 (9) 

vztj) = 4t.d - v&i + 1) + h(j) + 448 a t~~l/48 . (10) 

Substituting for vl( j - 1) and zIz( j - 1) in (7) and (8) from (9) and (IO), we arrive 
at the following relations: 

E1W = - [&(j) + ,o${.',, j - l)] ' 

“(j) = - 
h(j) . Mj - 1) - xl(j) . TI1 . 

I/3l(j> + rl( j) . E1( j - 111 ’ 

dl(.i> = - b5W . +dj - 1) + $dj)l . 
KG(j) + n(j) . -W - 111 ’ 

EzW = - [fl,( j) + y2Tf{! E2( j - l)] ’ 

Fz(‘) = - 
Mj> . Gtj - 1) - x2(j) - T21 . 

[f%(j) + yz(j) . E,(j - l)] ’ 

k(j) . d2tj - 1) + b(j)1 
“(j) = - [j%(j) + yz( j) . Ed j - I)] . 

C. Application of the End Conditions at ( = & 

We shall first apply (7) and (8) at j = 1. Then we get 

V,(O) = a . Tl + 17, - (A ~2/&), + a . v&9 + 1T7, * VlW, 

v,(O) = 5, . T, + 52 . @ ~,/&V a + t-3 . v&l + 54 . vz(l), 

where 

a = Xl(lMl), fl2 = -wPrl(l>> 

17, = -~1(1)/Y1(l), 174 = -acl>/rl<l>~ 

51 = xztlYYdl)> 52 = +vMlYYztl), 

53 = -%,(1)/Y2(1), 54 = -Bdl>lrz(l)* 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

W3) 
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Now using (2), (5), (17), and (18) and applying (11) to (16), we get the following 
relations: 

11 - a1 
E1’1,0 = - [G, . 26.5 - 17,] ; 

); (1) 
1 

= w1* 2% + fill . T . 

[G, .2S5 - I&] ’ ’ 

4 (1) = [rr, - K,-mT . 
1 

[G, .2St - &] ’ 

152 + Kt . W3 
‘2(1) = [G, . 2Sg - co] . 

Thus, after calculating El(l), Fl(l), FGl(l), E2(1), F2(1), and FG2(1), we can 
calculate El(j), Fl(j), FGl(j), E2(j), P2(j),FG2(j) using (ll)-(16) for j = 2-M. 

D. Application of End Conditions at g = g8 

We shall first apply the following conditions at j = M: 

dvl dv, 
i 1 

5 dvz 
df-T,; de- de 6 ( ) 

Applying (19), using (9) and (lo), we get at j = M: 

(3). = Pl . v,(W + P, + P, . (2)&i 

(+)8 = QI . v&W + Q2 + Qa . (+)E 

(19) 

(20) 

(21) 
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where 

SANKAR-RAO 

” = I 
1 El(M - 1) 

265. E,(M) - I 2Sf ’ 

pz = - [ 
I;,(M) 

2s5. E,(M) + 
NM - 1) 

I 2Sf ’ 

” = - [ 
+1(M) 

2Sf . E,(M) + 
MM - 1) 1 2Sf ’ 

” = [2Sf . &M) - 
Ea(M - 1) 

I 2S[ y 

MM - 1) 
‘a = - 12Sf. L*(M) + - 2S[ I ’ 

h(M) 
Q3 = - [2Sf. E,(M) + 

MM - 1) I 265 * 

From (20) and (21) we get 

t 1 
llv, 
4 a 

= -rl . v,(M) + X, . v,(M) + X, , 

Au, 
t 1 - 4 a 

= Y, , u,(M) + Y, . v,(M) + Y, , (23) 

where 

Pl 
x1 = 1 - P, . Q3 ’ 

xa = P3. Ql 
1 - Ps . Q8 ’ 

x = Pz + Ps - Qa Ql 
3 1 - P3. Q3 ’ ” = 1 - Q3. E ’ 

Qs. Pl 
” = 1 - Q, . P3 ’ 

y, = Qa + Qs - Pa 
1 - Q, . Pa 

Now we shall use (11) to (16) along with (22) and (23) and apply (3) and (6) at 
j = M. Thus we get 

W, . V,(M) + Wa . V,(M) + W, = 0, (24) 

Z, . V,(M) + Z, . V,(M) + Z3 = 0, (25) 
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where 
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Wl = Xl + L, + Nl . Y, ) 

w2 = x2 + p + Nl . Y, , 

w, = x, - Ml . T, + Nl . Y3 ) 

2, = Y, + L, - Nz . x, , 

2, = Y, - p - Nz . x, ) 

z, = Y, - M, . T, - N, . X, , 

From (24) and (25) we get 

V,(M) = 
w, . z, - w, . z, 
z, . w, - w, . z, ’ 

V,(M) = 
- W, - WI . V,(M) 

w, * 

(26) 

After obtaining u,(M) and u,(M), we can then use (9) and (10) with (22) and (23) 
to calculate or(j) and u,(j) for j = (M - 1) to 1. In this way we arrive at the 
complete solution in two scans only. 

3. SOME SPECIAL RESULTS 

The numerical scheme given in the last section was used to calculate the steady- 
state meridional wind u, due to the vertical flux of sensible heat to the atmosphere 
from the ground. This heat flux is associated with a uniform zonal current U(e) 
flowing over an axially-asymmetric ground temperature distribution, Tg . The 
model used is a linearized quasi-geostrophic model similar to that described by 
Dbbs [2]. The heating is assumed to be proportional to the difference between 
ground temperature and the air surface temperature, while it varies according to 
a power law with respect to e. In this problem, the system (l)-(6) arises when we 
expand v* = D sin 8 and Tg as follows, 

u* =J1&( Vl cos mX + V, sin mh) Pnn2(cos 19), 

Tg = f i (Tl cos mX + T, sin mX) Pnm(cos O), 
n-lrn=l 
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where VI(t) and V,(t) and T1 and T, are referred to in (l)-(6), and P,“(cos 13) = 
associated Legendre polynomial of order m and degree n, 

0 = colatitude, 

m = order of the Legendre polynomial, 

it = degree of the Legendre polynomial. 

Also, the coefficients S, and R, of (l)-(4) are related to n, the degree of Legendre 
polynomial, by the relation 

S, = R, = / Co - n(n + 1)1, 
(r 

where C,, is a function of 6. Hence, for a representative value of n, we can expect 
quasi-resonant solutions for the system (l)-(6). In crossing this quasi-resonant 
point, the solutions exhibit a sudden change in character. As examples we show in 

0 30 60 90 120 150 160 150 120 90 60 30 0 

LONGITUDE 

FIG. 1. Solution for u*(A,p) along 45”N latitude for (m, n) = (3, 3). Units are cm XC-~. 

Figs. 1 and 2 the v*-solutions portrayed as cross-sections along 45”N for (m, n) = 
(3, 3) and (m, n) = (3, 8), respectively. These modes are on either side of a 
quasi-resonant mode (m, n) = (3, 6). In obtaining these solutions, all coefficient 
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occurring in (1) to (6) were calculated using winter climatological data at 45”N 
latitude. The solution obtained by Dijiis [2] shows a close resemblance to the solu- 
tion for (m, n) = (3, S), shown in Fig. 2. 

0 30 60 90 120 150 160 150 120 90 60 30 0 
EAST 

LONGITUDE 
WEST 

FIG. 2. Solution for o*(h, p) along 45”N latitude for (m, n) = (3, 8). Units are cm se+. 
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